Skip to main content


Showing posts from August, 2021

Implementation of nano-size effect correction for modeling PDF

Simulation box for bulk (left) and nano (right) systems In Ref. [1], we discussed the theoretical principles for correcting the nano-size effect when modeling the pair distribution function (PDF). The fundamental idea is to bring back the uncorrelated pairings in between atoms belong to different nanoparticles, based on the assumption of random distribution of nanoparticles in system. Such uncorrelated pairings will then be added to the partial PDF's calculated explicitly from the structural model in simulation box, as presented in the right of the picture shown above. The kernel mathematical expression in Ref. [1] is reproduced as follows, \[G(r) = \sum_{i,j}c_ic_jf_if_j[\frac{\rho^{RMC}}{\rho}g_{ij}^{RMC}(r) + U(r) - 1]\] where the meaning of all symbols can be found in Ref. [1] and we won't reproduce them all here. Instead, we are going to focus on the term \(g_{ij}^{RMC}(r)\) which represents the partial PDF's calculated explicitly from the simulation box and \(U(r)\) w